The Infinite Pattern That Never Repeats

Abone ol
görünümler 17 866 463
50% 1 1



29 Kas 2022




Yük bağlantısı.....


Çalma listem
Daha sonra izle
Veritasium 2 yıl önce
Roger Penrose was just awarded the Nobel Prize for Physics! Not for this pattern but “for the discovery that black hole formation is a robust prediction of the general theory of relativity”
Zymon How To TV
Zymon How To TV 4 gün önce
i know your reaI name: Derek.
Andy Ellison
Andy Ellison 16 gün önce
Dude just stumbled onto the framework of existence 😳 is this not the mechanics of reality
Jacob Moss
Jacob Moss 2 aylar önce
Victoria R
Victoria R 2 aylar önce
adrian wright
adrian wright 3 aylar önce
@Bella Poof The Classic football surface consists of 12 Pentagons but along with 20 Hexagons - a mixture so it is not a pure Platonic solid
Blight Yıl önce
I feel like i learnt alot while learning nothing at the same time
EG and AJ
EG and AJ 2 gün önce
Wow, me too
Moshroomba 18 gün önce
This explains exactly how I feel
CoolJ 20 gün önce
Hey Michael, V-sause here
Prince jm Capulong
Prince jm Capulong 27 gün önce
meh to
Ahaan Jayden
Ahaan Jayden 27 gün önce
Elliott Bork
Elliott Bork 9 aylar önce
I love when math people describe stuff as “the most five-ish” which makes absolutely no sense but makes a ton of sense at the same time
Elliott Bork
Elliott Bork 6 aylar önce
@Jordan clever….
Jordan 6 aylar önce
I love when people describe stuff as "math people" which makes absolutely no sense but makes a ton of sense at the same time
Shaoyi Sheng
Shaoyi Sheng 7 aylar önce
Something interesting that Derek touches on but doesn't go into too much detail here is why it is that there are only 3 ways to tile a plane with regular polygons (the square, triangle, and hexagon) and why there are only 5 regular polyhedra. The reason for both of these ideas are intimately intertwined, and are shockingly purely arithmetic consequence of a simple geometric formula. According to the Euler characteristic, for any polyhedron the number of vertexes minus the number of edges plus the number of faces is equal to 2. For example, a cube has 8 verticies, 12 edges, and 6 faces, and 8-12+6 is 2. Also, note that for any polyhedron each face must have 3 or more edges, and 3 or more edges have to meet at every vertex. This point is really obvious if you try to build a 3d shape with 2 edges to a face or 2 edges to a vertex-- it just doesn't work. Let's say you have a regular polyhedra with p edges per face, and q edges per vertice. In this case because every edge is shared by exactly 2 faces, and every edge is shared by exactly 2 vertices, pf=2e and qv=2e. If this is confusing, imagine a cube. A cube has 6 faces, and every face has 4 edges. But because every edge borders two faces, it has (6*4)/2=12 edges. The same math applies to the vertices. You can rearrange the above to get f=(2e)/p and v=(2e)/q. But because of Euler's characteristic of polyhedrons, v-e+f=2. Simple substitution yields (2e/q)-e+(2e/p)=2. If you divide the previous equation by 2e and rearrange, you get (1/p) + (1/q) = (1/2) + (1/e). Now, if each face has 6 edges or more, it means that p ≥ 6, which means that q ≤ 3. However, that means that each vertex would have 2 or less edges, which is impossible. Thus p
EG and AJ
EG and AJ 2 gün önce
I really want to understand this one day but I just don't see that happening but cool! I can talk about cool 'math' stuff I made up/found out :)
Caston Young
Caston Young 2 aylar önce
"Now, if each face has 6 edges or more, it means that p ≥ 6, which means that q ≤ 3." Whoa whoa whoa, where did that come from? "However, that means that each vertex would have 2 or less edges, which is impossible. Thus p
ninty 4 aylar önce
joke about there being 48 regular polyhedra here or something
Kevin Wu
Kevin Wu 4 aylar önce
@hatixhe lacka to tile a shape is to be able to fill an infinetly large surface without leaving any gaps using only said shape. The only three regular polygons that can tile are mentioned in OC's comment
hatixhe lacka
hatixhe lacka 4 aylar önce
Ur a bit too smart man can u speak English?
Aarush Rout
Aarush Rout 2 aylar önce
While studying symmetry in school, I felt it was a boring topic And now here comes this guy who's making every possible boring topic interesting You're just AWESOME!
Bas de Jong
Bas de Jong 9 aylar önce
Also a fun trick to do when a few of these patterns are shown simultaneously is by squinting your eyes until the edges of the area are perfectly in line. You'll see that all the matching patterns show up as normal, but the parts where they're different you see almost flashing zig-zag lines.
Lil Bank account
Lil Bank account Yıl önce
Imagine finding over 20,000 tiles so that you could prove your professor wrong
EG and AJ
EG and AJ 2 gün önce
Wow, I'm imagining it, it's so crazy!
Llama Man
Llama Man Yıl önce
Petaurista Yıl önce
@Lil Bank account It's not about triangles?
felixthehuman Yıl önce
And then imagine having Linus "the cure is megadoses of Vitamin C" Pauling call you a quasiscientist.
Lil Bank account
Lil Bank account Yıl önce
@Petaurista Pythagorean theorem
Roo Wyrm
Roo Wyrm 21 gün önce
Huge thanks for this!!! I love these mathematical/geometric/pattern discussions. My absute fascination was engaged. I want a Penrose tiling set! By the way, I'm 67, nearly failed my maths 'O' level, ended up trading as a teacher, did an extra maths course after my degree, and became a maths and art specialist (primary - UK). Taught kids tables by using patterns, and colouring them. One class of mine shocked an OFSTED inspector because around half of the kids said maths was their favourite subject..... all because of pattern in maths. And it was all started by my fascination with Fibonnaci (amongst other mathematical patterns)
Patrick Modin
Patrick Modin 6 aylar önce
This is one of my favorite Veritasium videos so far!! Very intuitive, however can you demonstrate the vertices rule with the tiles?
Александра Лебедева
"what exists because we just can't percieve because it's considered impossible?" is such a beautiful and impactful question. how much have we dismissed because we couldn't believe it could exist? how much have we overlooked?
EG and AJ
EG and AJ 2 gün önce
Oh my gosh Everybody just needs to become like kids again.
Ali Chehab
Ali Chehab 4 aylar önce
This man's enthusiasm, individuality, and presentation is quite the treat. These are the types of teachers kids need to stay focused and excited.
David Sallge
David Sallge Yıl önce
This reminds me of an old saying we have here: "Everyone said that it was impossible. Then someone came who didn't know that and just did it."
Costco_Ghirardelli 18 gün önce
brightblackhole2 2 aylar önce
@Get on the cross and don’t look back sorry but no
TotoIsAyal 7 aylar önce
@Derp Atel like that one thing were I have a chance to walk through a wall.
TotoIsAyal 7 aylar önce
@Get on the cross and don’t look back a guy in the video is just talking about a cool pattern tf does cool flying book of rings have to do with this
Derp Atel
Derp Atel 7 aylar önce
impossible's a myth.
💜kookie💜 9 aylar önce
I love the way he explains everything it's so interesting if it was a part of my textbook I wouldn't have find it that interesting
LawsFreeLanceMalice 7 aylar önce
I’m downloading this video so perhaps when I’m next time drunk I might pick up more. 😁 The graphic pictures of geometric shapes made seeing your descriptions so much more interesting/amazing and I kept feeling like I was experiencing eureka moments. Those two pieces of acetate revealing deeper patterns close and far blew my mind. Thank you for creating this complicated video/topic more accessible for all.
Matthys Loedolff
Matthys Loedolff 7 aylar önce
The Chemistry Department (School of Molecular Sciences in the Bayliss Building) at The University of Western Australia has the Penrose pattern as floor tiles of the foyer and ground floor. Quite impressive when viewed from the top floor.
Hawkwoman H
Hawkwoman H 11 gün önce
Great video, loved this historical aspect and excellent explanations. My kids will love it too.
AFK_BIN 2 yıl önce
One of the most interesting classes I ever had
Annoying 17 year old
Annoying 17 year old 6 aylar önce
@Jordan Yes lol
Jordan 6 aylar önce
@Annoying 17 year old do you change your youtube username every birthday?
Time is Fading
Time is Fading 7 aylar önce
waya 8 aylar önce
Hoa Ngo
Hoa Ngo Yıl önce
Anthony Wade
Anthony Wade 7 aylar önce
Hats off for the editor, most mind-blowing animation I've ever seen
Noot noot Ima boot
Noot noot Ima boot 4 aylar önce
i used to play with those penrose tiles with the arcs! it's actually really satisfying to know now that the pattern Can't repeat as expected lol
CARLSFAB 9 aylar önce
We just did crystal structures in material science for mechanical engineering. I happened to stumble across this at the right time. I’m really interested in seeing if quasicrystal steel comes around in my lifetime. Great video as always.
Crepo Crop CRAP
Crepo Crop CRAP 6 aylar önce
I really appreciate this video. It took many of the things thst I have known for a long time and really put a great picture on how everything went together. You remind me of my favorite teacher. God bless you.
Excelsion Yıl önce
This man's enthusiasm, individuality, and presentation is quite the treat. These are the types of teachers kids need to stay focused and excited.
BRADLEY PLAYS 12 gün önce
3:43 hexagons are the bestagons
TheGamerJJMadness Aylar önce
I would not underpay Derek, his salary should be 70k
Robertas Kazlauskas
Robertas Kazlauskas 6 aylar önce
@Dain Fuentes You are right. Teachers are there to teach students. However, if their delivery is boring, students are going to get bored and will stop listening. As a teacher you are responsible to do your best to keep the attention of students so that they learn as much as they can from your class, be it by using humour or interacting with the class more. As soon as you lose their attention, they arent learning from you and their minds drift off to something that will actually stimulate their minds. For example, my physics teacher does a great job of making each class enjoyable, whereas my chemistry teacher drones on and on each class. I absolutely despise going to chemistry because her classes make me sleepy when i might have work the same day right after school. Whenever i can i just dont show up to her classes because i know im not gonna learn anything, whereas i actually want to show up to physics cause my teacher makes it not only bearable, but actually enjoyable. So no, the students are not responsible, it is the teachers responsibility.
Trubiso 7 aylar önce
@Dain Fuentes but they aren't there to give long boring classes where they just speak on and on without even checking on who they're talking to, I find it much better if the teacher makes the class engaging so I can actually focus on it because otherwise I'll find a distraction and the class will have been useless
Dain Fuentes
Dain Fuentes 7 aylar önce
@Darren Gedye I'd say a lot of the responsibility lies with students who place priority on the nonverbal aspects of communication rather than the information being conveyed. The extent to which a teacher is perceived as being passionate has no bearing on whether the information being taught is correct, useful, etc. Teachers aren't there to be entertainers.
SaucePan 5 aylar önce
I wonder if this conjecture was plugged into a quantum computer, would it truly yield an infinite conclusion? Or perhaps a incredibly massive number that we only now perceive as infinite?
Shreeyak Sajjan
Shreeyak Sajjan Aylar önce
Your visualisations are stunning. Such intricate patterns, drawn so beautifully
Ali Chehab
Ali Chehab 4 aylar önce
I love when math people describe stuff as “the most five-ish” which makes absolutely no sense but makes a ton of sense at the same time
Eliza Cooke
Eliza Cooke 3 gün önce
I so want some of those transparent sheets of the tiling, the patterns that emerged when overlaying them were fascinating and I want to play with it myself. Can you buy them anywhere?
No 2 yıl önce
My mind was blown several times through the course of this video, well done.
Theo Mossop
Theo Mossop 9 aylar önce
There is a theory that Penrose tilings are actually just a 2D slice of of a periodic structure in 5 dimensions
Joji Joestar
Joji Joestar 2 yıl önce
@Vijaz555 I don't hop on youtube with the expectation that every video is going to "boost" my life. On the contrary, youtube is a big time waster. I would say this does fascinate me as I have heard of quasicrystals before but did not quite understand them. So yeah made my day a bit better.
Vijaz555 2 yıl önce
does knowing this make your life any better though?
Max Loh
Max Loh 2 yıl önce
I've been watching this guy's videos; they used to be quite interesting but nowhere near the mind-blowing quality of this one. One thing I know for sure: This guy just keeps getting smarter and smarter, and that makes me happy.
calholli 2 yıl önce
lol.. I said the same thing.. Glad I'm not the only one.
Sailing Luana
Sailing Luana 26 gün önce
Kind of makes me think of a 3D map when looking at the parallel lines. But its a little different because none of the intersections can occupy the same space at the same time, like matter.
Kyle Moore
Kyle Moore 8 aylar önce
Man, it really feels impossible to tile a plane and never have the pattern repeat anywhere? Mind boggling. It feels like it’s kind of beyond our perception to an extent to imagine something infinite (hard enough as it is) only made of two shapes and you can never find a square of them that repeats despite the same shapes going on infinitely.
Charlie C
Charlie C 4 aylar önce
The tiles reminded me of this incredible game I picked up on a trip to Germany in a traditional fairy tale toy store a few years ago! "Walong" is the game and the tiles are all the same curved irregular shape with hooked curls all over. I wish I had ten or thirty boxes of pieces to see how far the presumed infinite pattern can go. Would @Veritasium be able to apply any of the mathematical testing on the other tiles/patterns in a further examination.
Joshua Hancock
Joshua Hancock 2 aylar önce
My Physics 581 (solid state physics) teacher briefly metioned quasicrystals in class today and I remembered this video. I went back and watched it again with a new perspective and it totally blew my mind. I'v always loved Kepler's wierd geometric obsessions, so this was cool to see applied to my field of study!
Shota Toriumi
Shota Toriumi 2 yıl önce
Me: Gives this pattern to the guy tiling my kitchen Tile guy: Sweats profusely
Lilly Cahill
Lilly Cahill Yıl önce
Draconicさん Yıl önce
@Zhong Ping that's why you use matching rules on the vertices and not just on the edges
BumbleBeagan Yıl önce
stolen comment bro
irvanm87 Yıl önce
Zhong Ping
Zhong Ping Yıl önce
When a mistake doesn't become apparent for another 4 hours of tiliing
Ron Phipps
Ron Phipps 3 aylar önce
It seems , as a rule ( remember , to every rule there are exceptions ) there is a ' dialectic ' going on here ( a dialectic is two seemingly opposing or conflicting ideas that can be true at the same time ) - which is that there is (or can be) order (patterns/repeating) and chaos( randomness/non-repeating ) systems that reside and operate within a certain region simultaneously. But maybe im both stating the obvious and generalizing things a bit too much. Bottom line- so fascinating and intriguing. Thank you for your thoughtful videos and the hard work that goes into them.
Servant 6 aylar önce
Wow... incredible finds. Makes me think of our Creator with each discovery. Also, this video is very well done and you appear to be incredibly smart. Well done.
Laura Bomhoff
Laura Bomhoff 7 aylar önce
These patterns are so pretty with such deep meaning. I would like to see them printed on clothing. Also tile work in homes. As art.
Ardy Visser
Ardy Visser 5 aylar önce
the golden ratio always hits you when you least expect it
Aspen Eatherton
Aspen Eatherton 2 yıl önce
“Well it’s infinite, so it’s gotta repeat at SOME point, right?” Scientists: “lmao no”
TheApexSurvivor Aylar önce
@eu basically, the easiest way to think of it is probably to think of counting up by 1 to infinity, while you'll see "23" millions of times as part of ever larger numbers (23, 123, 223, 230, ..., 1123, 1223, 1230, ..., 2233, 2300, 2323, 2230, ..., 123456789, ..., 232323232323, etc.), you'll never repeat the entire list of numbers you've counted so far in the order you've counted them, there'll always be some slight imperfection that breaks the pattern on the larger scale. For every "123456789", you'll always have a "123456788" and a"123456790" on either side to make you have to find a larger pattern to fit them into. These tilings are just a 2D representation of that.
Osi playz RBLX
Osi playz RBLX 7 aylar önce
Scientists: Nah we make the rules here LMAO
Itismethatguy 11 aylar önce
@Miniclash wait but then phi repeats?
eu Yıl önce
so basically There are little patterns that repeat but there can never be the same large pattern? I'm still confused. my limited amount of brain cells are dying.
Llama Man
Llama Man Yıl önce
Frog-Boi7 7 aylar önce
I love how a video about tiles turned into essentially multiverse theory
Bilal Rida
Bilal Rida 5 aylar önce
Question: so if you begin in the same way for aperiodic tiles do you end up with the same pattern?
Huw Day
Huw Day 10 aylar önce
"...And materials that existed all along, that we just couldn't see for what they are." This quote rings very true for me. I find that, the deeper I look into something (or anything, for that matter), the more I find that I have not understood what it was. I'm not even sure it is ever possible to see something for what it truly is. All you can do is understand it a little better, and remain aware that there is more to it.
George Flitzer
George Flitzer 7 aylar önce
This was utterly fascinating to me. Great video!
Anjiru Hyure
Anjiru Hyure 2 yıl önce
Isn't it weird how this could be a lecture in some school and we'd all be falling asleep, but this guy managed to make it so interesting that 3m people decided to watch it?
hülye ló
hülye ló 2 aylar önce
This is literally what this channel is about. The creator has a PhD in education research, with a thesis titled "Designing Effective Multimedia for Physics Education". I'd say he did a good job.
doraemon-einstein fujio tesla ramamujan
Now it's 14 m
mike jones
mike jones 11 aylar önce
14 million now
Leyren Yıl önce
As a teacher, you don't have the time to put in as much effort into a few minutes of content than a video does. Producing something like this takes weeks. Including scripting, filming, visualizing and editing.
XRose TheGreat
XRose TheGreat 2 yıl önce
@Ghost Anon bruh--- hey now, bold of you to assume I don't pay attention, first off, second, I was noticing the fact that this video is optional while school isnt, not that school becomes harder when classmates disrupt it. I'm sorry you've had that experience and I understand the frustration, but please don't take it out on me.
Ozone 4 aylar önce
I really enjoy all your videos, as well as this one! But in contrast to all the other scientists you credit, these "tiling the plane" guys, had just too much time on their hands!
Devon Bradbury
Devon Bradbury 6 aylar önce
One of your lessons that undeniably cracked a paradigm or two in this head! 🤔
Valiant Warrior
Valiant Warrior 4 aylar önce
I think I unknowingly played around with this concept as a kid using snake cubes bent into identical or form-fitting shapes with each other. Or is it considered something else if 3 dimensions are involved?
cryzz0n 7 aylar önce
The series of events that led to me watching this video are kind of insane. It all started with a picture of a pyramid of eggs on Facebook asking how many eggs were in the pyramid, that led me to looking at the sequence 1,5,14,30 etc. Numbers known as square pyramidal numbers, that led me to looking at sphere packing, which led me to Johannes Kepler, which then led me to tiling the plane, which lead me to Penrose tiling, which then led me to quasicrystals, and that led me to this video. All because of a picture of eggs on Facebook.
Shaun carter
Shaun carter Yıl önce
This whole Golden Ratio is fascinating. It keeps popping up all over the place. I dig it.
hamnidads 5 gün önce
@Happy duck It's so sad Happy duck died of ligma
Ben Maxwell
Ben Maxwell 16 gün önce
It's cool isn't it, have you tried researching the fine structure constant? It is somehow even more amazing!
Aqeel Aadam
Aqeel Aadam 4 aylar önce
@Ezekiel Johnson I dunno
Ezekiel Johnson
Ezekiel Johnson 4 aylar önce
@Aqeel Aadam What's death?
Aqeel Aadam
Aqeel Aadam 4 aylar önce
@Ezekiel Johnson I heard he died of ligme
Dustin Jacobsen
Dustin Jacobsen 6 aylar önce
I'm amazed that you or your tech team found a way to demonstrate a Moiré in a TRvid video. Did you do any processing to avoid getting Moirés with the grid of pixels? Did compression give you any trouble?
Jacob Creutzfeldt
Jacob Creutzfeldt 11 gün önce
I feel like Penrose just intuitively knows some very profound things. Seeing the Moiré patterns scale towards infinity then abruptly restart… Not surprising he came up with Conformal cyclic cosmology theory too.
Mickatju_ 110
Mickatju_ 110 4 aylar önce
Well then i have another question: can you do all this in 3D or is that impossible?
Harpreet Dhaliwal
Harpreet Dhaliwal 3 gün önce
I would love to see a video made like this but also looking at eastern countries to what they contributed to evolution and when.
Brianna Warren
Brianna Warren 2 yıl önce
Imagine having Penrose tiling in your bathroom floor. It's a very cool pattern, it'd be great to look at while you're otherwise occupied.
Shafa NT.
Shafa NT. 11 aylar önce
My house only has square tiles with simple patterns on them, yet I always find them interesting because the randomly rotated ones made a new shape that doesn't exist in the pattern. Man..I really need to stop looking at them ;-;
Fareed Abi Farraj
Fareed Abi Farraj 2 yıl önce
Yeah just it'll cost a bit too much🙈
Twisted Code
Twisted Code 2 yıl önce
Funny enough, finding the part of the shape on a bathroom floor that makes the pattern periodic is something I often do while "otherwise occupied". If I ever come across a Penrose tiling now, I'll (hopefully) know better than to sit forever because you said that ;-)
ExHydraboy 2 yıl önce
@Richard Pike crusty mmm
miniwheatz93 2 yıl önce
My thought exactly! Just need to determine how to not mess it up
Ali Chehab
Ali Chehab 4 aylar önce
One of the most interesting classes I ever had
Arun Maiti
Arun Maiti 7 aylar önce
Oh veritasium, your child like playing with the patterns makes the video an epic. Please make more of these kind of videos on other mathematical topics like geometry, topology. I have learned a lot from this video even after becoming a scientist working in this field.
Nicolai Ene
Nicolai Ene 4 aylar önce
What's interesting here is that fractals are infinite patterns that always repeats. But this is an infinite pattern that never repeats exactly. Which is kind of amazing. It's much like our universe
Surf Ninja
Surf Ninja 9 aylar önce
Does anybody know what Penrose patterns Derek use when he demonstrates the alignment with the transparency over the other pattern?
Honestly, this is quite entertaining. I didn’t expect patterns to spark my interest today-
just another account
just another account 8 aylar önce
Idk, my curiosity in patterns sparks up every now and then, usually at regular intervals. So judging by my previous behaviors, this was to be expected
april 8 aylar önce
@Your funni Boi hhhj
j Yıl önce
yeah and now im scared of the golden ratio
jobelplayed minecraft
@Savannah Gunter people form their internet personas to be as dipshit as possible, amazing.
The_silvermario Yıl önce
I agree
Vincent Tavani
Vincent Tavani 4 aylar önce
Penrose is such a perfect name for someone who discovered a nearly five-fold symmetrical tiling.
ComparatorClock Aylar önce
at 17:55 there is another interesting pattern: if you look closely you can see a ring of 10 groups of 5 dots each, where each group looks the vertices of a regular pentagon.
melisunae 6 aylar önce
is it a pattern if it never repeats ?? love the video! kepler is a personal favorite of mine, and this is crazy
Rneu1524 7 aylar önce
It amazes me how much order there is in randomness. The fact that some people believe that our world is disjointed, chaotic and random just shows that they haven't looked vey close. Even in the "imperfection" of the Penrose pattern there is so much perfection! God is so amazing and perfect in how he planned everything!
carykh 2 yıl önce
Whoa, the animations at 7:30 really helped me understand Penrose tiling better than anything I've seen before :O
Mapnitician 7 aylar önce
cary kepler hatchet
Mapnitician 7 aylar önce
cary killing hater
Tabla Sechstitu
Tabla Sechstitu Yıl önce
Llama Man
Llama Man Yıl önce
LordKyle - Objects and Lines and stuff
Hi Creator of BFB. :)
PoTato Head PokéMario
If each part of the pattern appears an infinite number of times on any pattern how is it impossible to force it to repeat?
Sagittarius A*
Sagittarius A* 6 aylar önce
So interestig! What an achievement of Penrose to reduce the shapes to two and that the pattern matches Kepler's 400 years old one - incredible.
muggy ate
muggy ate 7 aylar önce
now I wanna see this as a part of an algorythm to procedrally generate game maps
Dimitri Isov
Dimitri Isov 7 aylar önce
When he revealed the golden ratio is at the center of all this I felt myself align with the cosmos.
Peter S. Fam
Peter S. Fam Yıl önce
If a floor was tiled with this anti-pattern, I think it would drive me slowly to madness looking for a pattern
Forest Armstrong
Forest Armstrong Yıl önce
Llama Man
Llama Man Yıl önce
The UK
The UK Yıl önce
@marine biologist man Oooop-
auranecho Yıl önce
@porterde08 did you ..... watch the video
Michael_Zaki Yıl önce
I feel like the lack of any pattern is satisfying in it's own way.
Kat Bird
Kat Bird 4 aylar önce
Do you think you could use the penrose patterns to map dna? Look at mutations and probable expressions of traits?
Tom Gates
Tom Gates Aylar önce
Wait a sec, the dark lines he got when laying the transparent penrose tiling over the other one, aren't those this 5 lines that you can make? I am not quite sure but it sure would be interesting.
naj 8 aylar önce
What counts as repeating? Given infinite space, I would be surprised if no direction included the same subsequent twice in a row.
Vec Benoit
Vec Benoit 6 aylar önce
Totally fascinating. Thank you.
Jam Yıl önce
if it doesnt repeat does it even classify as a "pattern" anymore?
Jam Yıl önce
@Poplarino they *repeatedly* increase or decrease
eu Yıl önce
and also- too many smart people
eu Yıl önce
but you are using the same two tiles
Y Y Yıl önce
Wait... you're right....
banryu79 Yıl önce
@thumbs up Like some kinds of Cellular Automata!
ALEX BERMAN 8 aylar önce
i am so happy to see millions of views for this kind of videos - it gives me hope that not all people are complete idiots in this world. Best channel ever!
C SH 9 aylar önce
I wonder if a Penrose Tiling could be used to express star formation.
LiveXFreak 10 aylar önce
I've never finished school but watch alot of these videos, my little cousin taken physics loves talking with me because I know alot of what he's talking about, mostly from this channel, vsauce and Manny more :) just wanted to share
Kaththee 6 aylar önce
My ADD took me from tempering chocolate (melting and cooling chocolate so it sets up and is stable) to this fascinating video which I had to pause and rewind several times just to follow. Not to mention all the times I had to stop the video a few times to look things up like "icosahedrons" to "vertices." This is why I never get anything done.
Abhishek shah
Abhishek shah 2 yıl önce
I love how Veritasium has transitioned from physics into geometry, chaos theory and more math topics. Would love to see him cover some of graph theory as well!
Andras D. Nagy
Andras D. Nagy 2 yıl önce
@Ruben Alba ;)
Ruben Alba
Ruben Alba 2 yıl önce
@Andras D. Nagy don't feed the troll
Alethia Krino
Alethia Krino 2 yıl önce
also philosophy at the end when he questions if there are nonexistent things
רותם שלו
רותם שלו 2 yıl önce
I mean, these are all things that were briefly discussed in my physics BA, but yeah they're mostly math-y
Andras D. Nagy
Andras D. Nagy 2 yıl önce
@LouSaydus are you suggesting that non-white people are unable to think with the sophistication presented here? If yes, you are racist.
Japan Ball
Japan Ball 6 aylar önce
1:24: "There are just five platonic solids." Pentagonal Trapezohedrons: Am I a joke to you?
Japan Ball
Japan Ball 4 aylar önce
@Arturo’s Michelangeli Maybe it's because some pieces are upside down.
Arturo’s Michelangeli
The pentagonal trapezohedron is not a joke to me! Unfortunately, however it’s a “regular solid”, not a Platonic solid. boo!
Isaac Kellar
Isaac Kellar 9 aylar önce
How do you find, and cram, so much info into one video… and somehow in an understandable way…
Xiao 8 aylar önce
@2:05 My high school teacher taught us how to calculate the maximum number of balls that a cylinder could hold using the same arrangement. I was thinking why this gives us the maximum number? The proof was published in 2017... with so many authors on it.
Aboss 789
Aboss 789 2 aylar önce
Do you know that the discovery of 2,3,4,and 6 fold shapes in patterns was possibly discovered before this? In a lot of Middle Eastern geometric art sometime in the 10th century AD, 2,3,4, and 6 fold patterns were used in geometric art
Hannah R
Hannah R 2 yıl önce
I’d like to point out this dude hated his professor so much, he looked at 20,000 squares just to prove him wrong
¡Hey Pistolero!
¡Hey Pistolero! Yıl önce
Spite fuels invention just as much as necessity
Lea 2 yıl önce
@GIRminator r/wooosh
Shiromi Torayoshi
Shiromi Torayoshi 2 yıl önce
I feel so bad for the person who originally wrote this comment, Hannah R. All she wanted to do was to write a funny comment but ended up with a bunch of idiots in the reply section arguing over what a joke is. Jeez, don't you guys have anything better to do???
Manny Khosbin
Manny Khosbin 2 yıl önce
Me: Gives this pattern to the guy tiling my kitchen Tile guy: Sweats profusely
Dr.Mikizzle Therapist
I’d like to point out this dude hated his professor so much, he looked at 20,000 squares just to prove him wrong
Christopher Sines
Christopher Sines 6 aylar önce
This is the problem now I’m really curious as to how you observe snowflakes under a microscope or magnification before they melt. I assume the equipment is just absolutely cold.
Sunny🌿 7 aylar önce
I'm noticing that anything that's mathematical and extremely fascinating to me is almost guaranteed to involve the Golden Ratio and Fibonacci sequence
Python Otaku
Python Otaku 4 aylar önce
Really well illustrated... worthwhile subscription
The Starseeker
The Starseeker 4 aylar önce
The cannonball solution is one of those things everyone wonders about for a second and then immediately forgets about UNTIL watching this video and learn something incredibly interesting.
Hugo Bethancourt
Hugo Bethancourt 2 yıl önce
As a physics and mathematics major I can’t find any video of Derek’s that isn’t totally enthralling. Let’s all take a moment to congratulate Penrose for his prize and Derek for such consistency and quality in all of his videos. You truly make the world a better place!
Prakhar Gautam
Prakhar Gautam 2 yıl önce
“As a physics and mathematics major”
Tobias Rogers
Tobias Rogers 2 yıl önce
@Beau Saunders lol
monir kinder
monir kinder 2 yıl önce
@Beau Saunders why so?
Beau Saunders
Beau Saunders 2 yıl önce
I haven’t enjoyed a video of his for years
UranusProductions1 7 aylar önce
Yeah we're definitely in a simulation bc this is all lining up too perfectly
Daniel Oliveira
Daniel Oliveira 4 aylar önce
In 2012 I attended a talk by the very Dan Schechtman about quasi-cristals. His talk paled in comparison to this video. I walked out of there with absolutely no idea of what quasi-cristals were, but you made it cristal clear to me (pun not inended) in just 20 minutes. Goes to show you the, not just importance, but NECESSITY of science communicators to spread knowledge.
Lucas Walters
Lucas Walters 9 aylar önce
This channel is nerd heaven and I’m obsessed with it. Never cease to learn new things
EHH246 8 aylar önce
My question were there any designers looking at these patterns and going "I know what my next floor is going to look like"?
Hot Potato
Hot Potato 2 yıl önce
*Deep Inhale* I didn’t need an existential crisis about pentagons.
Roland Duson
Roland Duson 2 yıl önce
@BlazarBlue Yup.
Pickle 2 yıl önce
James Videla then why waste your time trying to argue with a kid?
Roland Duson
Roland Duson 2 yıl önce
@R00B Did I though?
Not my real name
Not my real name 2 yıl önce
@TurboCMinusMinus haha
𝕸𝖗. 𝖄𝖆𝖓𝖌
@R00B *Deep Inhale* yes
Don Voltonus
Don Voltonus Aylar önce
The whole "We couldn't see what we thought was impossible" reminds me of way back when some scientists thought Crustaceans didn't have blood, because well, there's no red liquid. That blue stuff must just be something else.
Thomas Ngeow
Thomas Ngeow 6 aylar önce
He stumbled on the true nature of reality at 12:15: "Where there is an uncountable infinity of different Universes, but just by looking at them, you could never tell them apart." Amazing!
Nick Greene
Nick Greene 4 aylar önce
I wonder if the dark lines have themselves a pattern to them. Perhaps we only see the outskirts of a larger structure .
Samuel Hawksworth
Samuel Hawksworth 5 aylar önce
So I know it’s silly of me, but I don’t get how this doesn’t repeat at 8:50 . On the left and right hand of the screen there is two blue stars in the same orientation with red around them. Can someone explain why this isn’t a repetition?
Yannis Constantinides
For people who love geometry, this is just absolutely inspiring.
Mandorle21 2 yıl önce
If you really loved geometry, you already knew about this.
Richtofen 2 yıl önce
Sophie Greenidge Because we get forced to learn about it in school regardless of how useless it is.
Sophie 2 yıl önce
@D- licious me... it's fascinating and beautiful and practical. How could you not love it?
LoUgandan Chad
LoUgandan Chad 2 yıl önce
Marco D. Toon said by “marco d. toon” lmao
Marco D. Toon
Marco D. Toon 2 yıl önce
@LoUgandan Chad Said by "ugandan chad" lmao
jim twisted
jim twisted 6 aylar önce
Can you do a piece about 3d quasi crystal shapes?
Batmanmg 4 aylar önce
Is the two tile discovery predictable because irrational numbers can be expressed in binary? Is there only one pair of shapes that can fit? Do irrational numbers correlate to the geometry of tiling the plane?
inneralpha 7 aylar önce
Excellent video! Thank you for satisfying my curiosity. Have a great day!
The Snowflake Mystery
görünümler 7 600 000
Math's Fundamental Flaw
görünümler 22 000 000
how to pull a rabbit out of a hat
The Discovery That Transformed Pi
görünümler 11 000 000
World's Highest Jumping Robot
görünümler 8 300 000
The Bizarre Behavior of Rotating Bodies
How Electricity Actually Works
görünümler 7 100 000
Why Gravity is NOT a Force
görünümler 10 000 000
how to pull a rabbit out of a hat